DIENSTBLATT DER HOCHSCHULEN DES SAARLANDES

2016	ausgegeben zu Saarbrücken, 28. April 2016	Nr. 22
------	---	--------

UNIVERSITÄT DES SAARLANDES	Seite
Fachspezifische Bestimmungen für den Bachelor- und Master-Studiengang Bioinformatik der Universität des Saarlandes zur Gemeinsamen Prüfungsordnung für die Bachelor- und Master-Studiengänge der Fakultät 6 (Naturwissenschaftlich-Technische Fakultät I – Mathematik und Informatik)	
Vom 21. Januar 2016	180
Studienordnung für den Bachelor- und Master-Studiengang Bioinformatik	105

Fachspezifische Bestimmungen für den Bachelor- und Master-Studiengang Bioinformatik der Universität des Saarlandes zur Gemeinsamen Prüfungsordnung für die Bachelor- und Master-Studiengänge der Fakultät 6 (Naturwissenschaftlich-Technische Fakultät I – Mathematik und Informatik)

Vom 21. Januar 2016

Das Zentrum für Bioinformatik der Universität des Saarlandes hat auf Grund von § 59 Universitätsgesetz vom 23. Juni 2004 (Amtsbl. S. 1782), zuletzt geändert durch Gesetz vom 14. Oktober 2014 (Amtsbl. S. 406) und auf der Grundlage der Gemeinsamen Prüfungsordnung für die konsekutiven Bachelor- und Master-Studiengänge der Fakultät 6 (Naturwissenschaftlich-Technische Fakultät I – Mathematik und Informatik) vom 2. Juli 2015 (Dienstbl. Nr. 72, S. 616) folgende Fachspezifische Bestimmungen für den Bachelor- und Master-Studiengang Bioinformatik erlassen, die nach Zustimmung des Senats der Universität des Saarlandes und des Universitätspräsidiums hiermit verkündet werden.

§ 27 Geltungsbereich (vgl. § 1 Gemeinsame Prüfungsordnung)

Diese Fachspezifischen Bestimmungen gelten für den Bachelor- und Master-Studiengang Bioinformatik der Universität des Saarlandes.

§ 28 Allgemeine Bestimmungen

- (1) Bei den Studiengängen arbeiten die Fakultät 2 (Medizinische Fakultät), die Fakultät 6 (Naturwissenschaftlich-Technische Fakultät I Mathematik und Informatik) und die Fakultät 8 (Naturwissenschaftlich-Technische Fakultät III Chemie, Pharmazie, Bio- und Werkstoffwissenschaften) sowie das Deutsche Forschungsinstitut für künstliche Intelligenz, das Max-Planck-Institut für Informatik, das Helmholtz Institut für Pharmazeutische Forschung Saarland und das Fraunhofer-Institut für biomedizinische Technik (IBMT) zusammen.
- (2) Zuständig für die Organisation von Lehre, Studium und Prüfungen ist das Zentrum für Bioinformatik der Universität des Saarlandes, das durch einen gemeinsamen Beschluss der Dekane der Fakultät 2 (Medizinischen Fakultät, der Fakultät 6 (Naturwissenschaftlich-Technischen Fakultät I Mathematik und Informatik) und der Fakultät 8 (Naturwissenschaftlich-Technischen Fakultät III Chemie, Pharmazie, Bio- und Werkstoffwissenschaften) zum Zwecke der Förderung von Forschung und Lehre im Bereich der Bioinformatik gegründet wurde.
- (3) Das Zentrum für Bioinformatik der Universität des Saarlandes verleiht auf Grund eines durch diese Ordnung geregelten Prüfungsverfahrens den Grad eines "Bachelor of Science", abgekürzt B.Sc., bzw. eines "Master of Science", abgekürzt M.Sc. .
- (4) Soweit dies nicht in dieser Ordnung spezifisch geregelt ist, gelten alle Regelungen sowohl für das Vollzeit- als auch für das Teilzeitstudium.

§ 29 Prüfungsausschuss

(1) Für die Wahrnehmung der durch diese Ordnung zugewiesenen Aufgaben wird ein Prüfungsausschuss gebildet, dem die folgenden, vom Zentrumsrat des Zentrums für Bioinformatik jeweils für zwei Jahre zu wählenden Mitglieder angehören:

- 1. drei Vertreter/Vertreterinnen der Gruppe der Hochschullehrer/Hochschullehrerinnen,
- 2. eine akademische Mitarbeiterin/ein akademischer Mitarbeiter, die/der hauptberuflich im Zentrum für Bioinformatik tätig ist, sowie
- 3. eine Studentin/ein Student.

Für jedes Mitglied ist eine Stellvertreterin/ein Stellvertreter zu wählen.

- (2) Der Zentrumsrat des Zentrums für Bioinformatik wählt aus den Mitgliedern des Prüfungsausschusses nach Absatz 1 Nr. 1 die Vorsitzende/den Vorsitzenden des Prüfungsausschusses und deren/dessen Stellvertreterin/Stellvertreter.
- (3) Die weiteren, den Prüfungsausschuss betreffenden Punkte sind in § 7 der Gemeinsamen Prüfungsordnung für die konsekutiven Bachelor- und Master-Studiengänge der Fakultät 6 (Naturwissenschaftlich-Technischen Fakultät I Mathematik und Informatik) geregelt.
- (4) Zuständig für die in § 19 Abs. 1 der Gemeinsamen Prüfungsordnung für die konsekutiven Bachelor- und Master-Studiengänge der Fakultät 6 (Naturwissenschaftlich-Technischen Fakultät I Mathematik und Informatik) geregelte Anerkennung von Studienzeiten, Studienleistungen und Prüfungsleistungen ist der Prüfungsausschuss oder in seinem Auftrag die/der Prüfungsausschussvorsitzende. Vor Entscheidungen über die Anerkennung ist eine zuständige Fachvertreterin/ein zuständiger Fachvertreter zu hören.

§ 30 Studiengang-Formen (vgl. § 3 Gemeinsame Prüfungsordnung)

Die Bachelor- und Masterstudiengänge Bioinformatik sind Kernbereich-Studiengänge im Sinne der Rahmenprüfungsordnung der Universität des Saarlandes.

§ 31 Studienaufwand (vgl. § 4 Gemeinsame Prüfungsordnung)

Für Proseminare, Seminare und Praktika kann eine Anwesenheitspflicht bestehen, die der Dozent zu Beginn der Veranstaltung bekannt gibt.

§ 32 Prüfer/Prüferinnen; Betreuer/Betreuerinnen; Beisitzer/Beisitzerinnen (vgl. § 8 Gemeinsame Prüfungsordnung)

- (1) Dieser Paragraph ersetzt § 8 in der Gemeinsamen Prüfungsordnung für die konsekutiven Bachelor- und Master-Studiengänge der Fakultät 6 (Naturwissenschaftlich-Technischen Fakultät I Mathematik und Informatik) und regelt die Bestellung von Prüferinnen/Prüfern, Beisitzerinnen/Beisitzern und von Betreuerinnen/Betreuern bzw. Gutachterinnen/Gutachtern von Abschlussarbeiten.
- (2) Der Prüfungsausschuss oder in seinem Auftrag die/der Vorsitzende bestellt die Prüferinnen/Prüfer und die Beisitzerinnen/Beisitzer.
- (3) Zu Prüferinnen/Prüfern und Betreuern/Gutachtern der Bachelor- und Master Arbeiten sind für das jeweilige Prüfungsgebiet zuständige Professorinnen/Professoren, Junior-professorinnen/Juniorprofessoren, Nachwuchsgruppenleiterinnen/Nachwuchsgruppenleiter, Hochschuldozentinnen/ Hochschuldozenten, Professorinnen/Professoren im Ruhestand, Honorarprofessorinnen/Honorarprofessoren, Privatdozentinnen/Privatdozenten, außerplanmäßige Professorinnen/Professoren des Zentrums für Bioinformatik und der Medizinischen Fakultät, der Fakultät 6 (Naturwissenschaftlich-Technische Fakultät I Mathematik und

Informatik) und der Fakultät 8 (Naturwissenschaftlich-Technische Fakultät III - Chemie, Pharmazie, Bio- und Werkstoffwissenschaften) sowie in den Fakultäten kooptierte Professorinnen/Professoren zu bestellen. In besonderen Fällen können hauptamtliche und hauptberufliche Lehrkräfte, wissenschaftliche Mitarbeiterinnen/Mitarbeiter, Lehrbeauftragte für den Bereich des Lehrauftrags und Professorinnen/Professoren anderer Fakultäten der Universität des Saarlandes und anderer Hochschulen sowie wissenschaftliche Mitarbeiterinnen/Mitarbeiter der Max-Planck-Institute für Informatik und Softwaresysteme, des Deutschen Forschungsinstituts für Künstliche Intelligenz, des Helmholtz-Instituts für Pharmazeutische Forschung Saarland und des Fraunhofer-Instituts für Biomedizinische Technik (IBMT) zu Prüferinnen/Prüfern bestellt werden.

Einer beiden Gutachter von Bachelor- und Master-Arbeiten muss Professorin/Professor, Juniorprofessorin/Juniorprofessor. Hochschuldozentin/Hochschuldozent, Professorin/Professor im Ruhestand, Honorarprofessorin/Honorarprofessor, Privatdozentin/Privatdozent. außerplanmäßige Professorin/Professor des Zentrums Bioinformatik entweder der Medizinischen Fakultät. (Naturwissenschaftlich-Technische Fakultät I - Mathematik und Informatik) oder der Fakultät 8 (Naturwissenschaftlich-Technische Fakultät III - Chemie, Pharmazie, Bio- und Werkstoffwissenschaften) sein.

§ 33 Zugang zum Master-Studium (vgl. § 12 Gemeinsame Prüfungsordnung)

- (1) Zugangsberechtigt zum Master-Studiengang ist,
- wer an einer deutschen Hochschule einen Bachelor-Abschluss oder an einer ausländischen Hochschule einen äquivalenten Abschluss in einem Studiengang der Bioinformatik oder einem verwandten Fach erworben hat.
- 2. und die besondere Eignung (§ 69 Abs. 5 UG) nachweist.
- (2) Kriterien für die Feststellung der besonderen Eignung sind:
- a. der Nachweis englischer Sprachkenntnisse auf fortgeschrittenem Niveau (in der Regel C1)
- b. die in der bisherigen akademischen Laufbahn erbrachten Leistungen und der fachliche Inhalt des Bachelor-Abschlusses. Der Kandidat/die Kandidatin sollte dabei Kompetenzen nachweisen, die denen im Bachelorstudiengang Bioinformatik an der Universität des Saarlandes vermittelten Kompetenzen entsprechen. Dies schließt insbesondere wesentliche Kompetenzen in den folgenden Bereichen ein:
 - I. Grundkenntnisse der Mathematik und Informatik
 - II. Grundkenntnisse der Bioinformatik (Sequenzanalyse, Proteinstruktur)
 - III. Grundkenntnisse in Bereichen der Lebenswissenschaften (Molekularbiologie, Genetik)
- c. das in Form eines Dossiers dokumentierte Studieninteresse

Mit Hilfe der genannten Kriterien wird die studiengangspezifische Eignung der Bewerberin/des Bewerbers mit dem Profil und den Anforderungen des Master-Studiengangs Bioinformatik abgeglichen. Die Feststellung, ob die Zugangsvoraussetzungen erfüllt sind, trifft der Prüfungsausschuss.

§ 34 Verfahren und Gestaltung (vgl. § 23 Gemeinsame Prüfungsordnung)

(1) Die selbstständige Ausführung der Bachelor- bzw. Master-Arbeit wird in einem 30minütigen Kolloquium überprüft, das in der Regel nach Abgabe der schriftlichen Ausarbeitung der Bachelor- bzw. Master-Arbeit abgelegt wird und in dem die eingesetzten Methoden und erzielten Ergebnisse präsentiert werden. In einer anschließenden Diskussion zeigen die Studierenden, dass sie ihre Arbeit gegenüber kritischen Fragen verteidigen können. Einer der Prüfer soll der Themensteller der Arbeit sein. Die Leistung im Kolloquium fließt in die Benotung der Arbeit ein.

(2) Für die in § 23 Abs. 2 der Gemeinsamen Prüfungsordnung für die Bachelor- und Master-Studiengänge der Fakultät 6 (Naturwissenschaftlich-Technischen Fakultät I - Mathematik und Informatik) geregelte elektronische Version seiner/ihrer Bachelor/Master-Arbeit muss der Kandidat/die Kandidatin der Universität das Recht einräumen, diese (evtl. unter Übertragung in ein anderes gängiges Dateiformat) in Datennetzen zu vervielfältigen und öffentlich wiederzugeben. Die Vollziehung des Abschlusses setzt die Ablieferung der elektronischen Version voraus. Der Prüfungsausschuss kann auf begründeten Antrag die/den Studierende/n von der Verpflichtung zur Ablieferung einer elektronischen Version befreien.

§ 35 Bestehen und Gesamtnote der Master-Prüfung (vgl. § 24 Gemeinsame Prüfungsordnung)

Das Prädikat "mit Auszeichnung" wird im Master-Studiengang bei einer Gesamtnote von 1.1 oder besser vergeben, sofern alle eingebrachten Leistungen in der Regelstudienzeit erbracht wurden.

§ 36 Akademischer Grad und Abschluss-Dokumente (vgl. § 25 Gemeinsame Prüfungsordnung)

- (1) Die Urkunde ist von der Sprecherin/dem Sprecher des Zentrums für Bioinformatik und von der/dem Prüfungsausschussvorsitzenden zu unterzeichnen.
- (2) Das Zeugnis kann über die Angaben nach Artikel 25 Abs. 1 der Gemeinsamen Prüfungsordnung für die Bachelor- und Master-Studiengänge der Fakultät 6 (Naturwissenschaftlich-Technischen Fakultät I Mathematik und Informatik) hinaus weitere erbrachte Leistungen und die jeweils erzielten Ergebnisse enthalten.

§ 37 Besondere Bestimmungen für internationale Studiervarianten mit Doppelabschluss

- (1) Für die internationalen Studiervarianten gelten die besonderen Bestimmungen der jeweiligen Kooperationsvereinbarung zwischen der Universität des Saarlandes und der Partneruniversität. Die Kooperationsvereinbarung soll insbesondere Regelungen zum Studienverlauf, zu den an der Universität des Saarlandes und an der Partneruniversität zu belegenden Modulen und zum gemeinsamen Studienprogramm enthalten. Für den jeweiligen Studienanteil gelten die Regelungen der Studienordnung und der Prüfungsordnung der jeweiligen Universität.
- (2) Bei Entscheidungen, die einen Studierenden/eine Studierende einer internationalen Studiervariante betreffen, ist mindestens ein Hochschullehrer/eine Hochschullehrerin der Partneruniversität als zusätzliches Mitglied im Prüfungsausschuss zu benennen.
- (3) Für die internationale Studiervariante eines Master-Studiengangs gilt im Rahmen der Zugangsberechtigung zum Master-Studiengang, dass der nachzuweisende Bachelor-Abschluss oder äquivalente Abschluss in einem verwandten Fach durch den Abschluss eines in der Kooperationsvereinbarung festgelegten Studiengangs oder eines damit verwandten Fachs an der Partneruniversität nachgewiesen werden kann.

§ 38 In-Kraft-Treten, Übergangsregelung

- (1) Diese Ordnung tritt am Tage nach ihrer Bekanntmachung im Dienstblatt der Hochschulen des Saarlandes in Kraft.
- (2) Studierende, die vor dem In-Kraft-Treten dieser Ordnung ihr Studium im Bachelor- oder Master-Studiengang der Bioinformatik (Zentrum für Bioinformatik) aufgenommen haben, durchlaufen das Studium und legen die Studien- und Prüfungsleistungen nach den zu diesem Zeitpunkt jeweils gültigen Studien- und Prüfungsordnungen ab, letztmalig im Sommersemester 2020.

Saarbrücken, 19. April 2016

Der Universitätspräsident

(Univ.-Prof. Dr. Volker Linneweber)

Studienordnung für den Bachelor- und Master-Studiengang Bioinformatik

Vom 21. Januar 2016

Das Zentrum für Bioinformatik der Universität des Saarlandes hat auf Grund von § 54 Universitätsgesetz vom 23. Juni 2004 (Amtsbl. S. 1782), zuletzt geändert durch Gesetz vom 14. Oktober 2014 (Amtsbl. S. 406) und auf der Grundlage der Gemeinsamen Prüfungsordnung für die Bachelor- und Master-Studiengänge der Fakultät 6 (Naturwissenschaftlich-Technische Fakultät I – Mathematik und Informatik) vom 2. Juli 2015 (Dienstbl. Nr. 72, S. 616) folgende Studienordnung für den Bachelor- und den Master-Studiengang Bioinformatik erlassen, die nach Zustimmung des Senats hiermit verkündet wird.

Inhalt:

- § 1 Geltungsbereich
- § 2 Ziele des Studiums und Berufsfeldbezug
- § 3 Studienbeginn und Studiendauer
- § 4 Profilbildung im Bachelor-Studiengang
- § 5 Art der Lehrveranstaltungen
- § 6 Aufbau und Inhalt des Bachelor-Studiengangs
- § 7 Bachelorarbeit und Bachelorseminar
- § 8 Aufbau und Inhalt des Master-Studiengangs
- § 9 Masterarbeit und Masterseminar
- § 10 Studienplan, Modulhandbuch
- § 11 Studienberatung
- § 12 Auslandsaufenthalt
- § 13 In-Kraft-Treten

§ 1 Geltungsbereich

(1) Diese Studienordnung regelt Inhalt und Aufbau für den Bachelor- und Master-Studiengang Bioinformatik auf der Grundlage der Gemeinsamen Prüfungsordnung für die Bachelor- und Master-Studiengänge der Fakultät 6 (Naturwissenschaftlich-Technische Fakultät I – Mathematik und Informatik) vom 2. Juli 2015 (Dienstbl. Nr. 72, S. 616) sowie der Fachspezifischen Bestimmungen für den Bachelor- und Master-Studiengang Bioinformatik der Universität des Saarlandes vom 21. Januar 2016 (Dienstbl. Nr. 22, S. 180)

§ 2 Ziele des Studiums und Berufsfeldbezug

- (1) Gegenstand des Faches Bioinformatik sind die Entwicklung von Algorithmen und Software, mit denen man biochemische Prozesse simulieren und molekularbiologische Daten analysieren kann.
- (2) Ziel des Bioinformatik-Studiums ist insbesondere die Vermittlung der theoretischen Grundlagen und Methoden des Faches Bioinformatik. Als Grundlage werden dafür Grundkenntnisse und Methoden aus den benachbarten Disziplinen Mathematik und Informatik, sowie die theoretischen Grundlagen ausgewählter Bereiche der Lebenswissenschaften (allgemeine, organische und physikalische Chemie, Biochemie, Molekular- und Mikrobiologie, Pharmazie und medizinische Chemie, sowie Biophysik) vermittelt. Die Vertiefung des gelernten Stoffes in Praktika (Bioinformatik, Informatik, sowie Lebenswissenschaften) ist unabdinglich und führt an die praktische Anwendung im Berufsleben heran.

- (3) Im Rahmen des Bachelor-Studiengangs werden den Studierenden eine wissenschaftliche Grundqualifizierung sowie die grundlegenden Fachkenntnisse und Fertigkeiten in den in Absatz 2 genannten Fächern vermittelt. Durch die Modularisierung des Studiums können die Studierenden gemäß den beiden in § 4 ausführlich beschriebenen Vertiefungen ihr Studium nach ihren Fähigkeiten und Interessen ausgestalten.
- (4) Der Master-Studiengang ist stärker forschungsorientiert. Ziel des Masterstudiengangs ist es, ergänzend und vertiefend zum vorhergehenden Bachelor-Studiengang, auf eine anspruchsvolle nationale und internationale Forschungs- und Entwicklungstätigkeit im Bereich der Bioinformatik vorzubereiten, bzw. den Studierenden zu erlauben, ihre Laufbahn im akademischen Sektor der Bioinformatik fortzusetzen. Dazu sollen insbesondere die methodischen Fähigkeiten der Studierenden gefördert werden, um sie in die Lage zu versetzen, innovative neue Methoden zu entwickeln.

§ 3 Studienbeginn und Studiendauer

- (1) Das Bachelorstudium sowie das Masterstudium kann jeweils zum Winter- und Sommersemester eines Jahres aufgenommen werden.
- (2) Das Lehrangebot im Bachelorstudiengang ist so organisiert, dass das Studium in sechs Semestern abgeschlossen werden kann (Regelstudienzeit). Das Lehrangebot im Masterstudiengang ist so organisiert, dass das Studium in vier Semestern abgeschlossen werden kann (Regelstudienzeit).

§ 4 Profilbildung im Bachelor-Studiengang

Im Rahmen des Bachelor-Studiengangs werden den Studierenden eine wissenschaftliche Grundqualifizierung im biowissenschaftlichen Bereich (Biochemie, Molekularbiologie, Genetik, Pharmazie, Biotechnologie usw.), im Bereich der Informatik und der Mathematik sowie die grundlegenden Fachkenntnisse und Fertigkeiten der Bioinformatik vermittelt. Die Absolventinnen Bachelor-Studiengangs und Absolventen des biowissenschaftlichen Probleme und Fragestellungen verstehen können, mathematisch modellieren und wissenschaftliche Methoden und Erkenntnisse der Bioinformatik auf diese Probleme anwenden können. Der Bachelor-Studiengang soll die Absolventinnen und Absolventen auf ihre berufliche Praxis im Bereich der Bioinformatik vorbereiten. Ein Teil der Absolventinnen und Absolventen des Bachelor-Studiengangs wird im späteren Berufsalltag existierende Bioinformatik-Software und -Tools anwenden, um neues biologisches Wissen zu gewinnen (zum Beispiel: Identifizierung neuer Zielmoleküle für die Therapie von bestimmten Krankheiten, Identifizierung neuer Leitstrukturen für die Entwicklung von Medikamenten, Optimierung von Therapien usw.). Ein anderer Teil der Absolventinnen und Absolventen wird neue Bioinformatik-Methoden und -Tools entwickeln und implementieren. Wir unterscheiden hier also zwischen dem Berufsbild des "Bioinformatik-Anwenders" und dem Berufsbild des "Bioinformatik-Entwicklers". Der Anwender benötigt für den Berufsalltag ein größeres Wissen im Bereich der Life-Sciences und der Bioinformatik-Tools, wohingegen die Entwicklung neuer Bioinformatik-Tools tiefere Kenntnisse der Informatik- Methoden und der Mathematik erfordert. Der Bachelor-Abschluss "Bachelor of Science" kann demnach auf zwei verschiedene Weisen erworben werden. Die beiden Vertiefungen "Methodische Bioinformatik" ("CMB") und "Angewandte Bioinformatik" ("BI") werden abgekürzt mit den im angelsächsischen Umfeld gebräuchlichen Begriffen "Computational Molecular Biology" für eine Bioinformatik mit der Gewichtung auf Methodenentwicklung und "Bioinformatics" für eine Bioinformatik, die die Anwendung bioinformatischer Techniken betont. Um den Studierenden eine zu diesen Berufsbildern passende berufsqualifizierende Ausbildung zu garantieren und ihnen mehr Wahlmöglichkeiten innerhalb des Bachelor-Studiengangs

einzuräumen, erlaubt der Studiengang den Studierenden während der zweiten Hälfte ihres Studiums entweder mehr Credit Points aus den biologischen Kategorien oder aus den informatischen Kategorien einzubringen. Die erste Profilbildung entspricht dem Berufsbild des "Bioinformatik-Anwenders", während die zweite Profilbildung dem Berufsbild des "Bioinformatik- Entwicklers" entspricht. Dieses mehr theorieorientierte Profil bereitet auch auf eine akademische Laufbahn im Bereich Bioinformatik sowie auf Leitungsfunktionen in der Industrie vor und ist deshalb für die Zulassung zum Master-Studiengang Bioinformatik zu empfehlen. Bachelor-Absolventinnen und -Absolventen, die zunächst mehr Gewicht auf die biologische Seite der Bioinformatik legen möchten und dennoch später einen Master-Abschluss erwerben möchten, empfehlen wir, zum Beispiel einen Master-Studiengang "Biotechnologie" oder "Drug Design" zu wählen. Durch die Betonung von zwei unterschiedlichen Profilen wird nicht nur die zentrale Forderung berücksichtigt, dass die Ausbildung in Bachelor-Studiengängen berufsqualifizierend sein soll, sondern es werden den Studierenden auch mehr Wahlmöglichkeiten eingeräumt und es wird den Studierenden ermöglicht, sich entsprechend ihrer Interessen (Life Sciences oder IT) und Fähigkeiten zu spezialisieren.

§ 5 Art der Lehrveranstaltungen

Das Lehrangebot wird durch Lehrveranstaltungen folgender Art vermittelt:

- 1. Vorlesungen (V, Regelgruppengröße = 100): Sie dienen zur Einführung in ein Fachgebiet und vermitteln u. a. einen Überblick über fachtypische theoretische Konzepte und Prinzipien, Methoden und Fertigkeiten, Technologien und praktische Realisierungen. Vorlesungen geben Hinweise auf weiterführende Literatur und eröffnen den Weg zur Vertiefung der Kenntnisse durch Übungen, Praktika und ergänzendes Selbststudium.
- 2. Übungen (Ü, Regelgruppengröße = 20): Sie finden überwiegend als Ergänzungsveranstaltungen zu Vorlesungen bevorzugt in kleineren Gruppen statt. Sie sollen den Studierenden durch Bearbeitung exemplarischer Probleme die Gelegenheit zur Anwendung und Vertiefung der in der Vorlesung vermittelten Lehrinhalte sowie zur Selbstkontrolle des Wissensstandes ggf. durch eigene Fragestellung geben.
- 3. Proseminare und Seminare (S, Regelgruppengröße = 15) erweitern die bereits erworbenen Kenntnisse und vermitteln durch das Studium von Fachliteratur und Quellen in Seminargesprächen, Referaten oder Seminararbeiten einen vertieften Einblick in einen Forschungsbereich. Sie dienen darüber hinaus dem Erlernen wissenschaftlicher Darstellungs- und Vortragstechniken sowie der Anleitung zu kritischer Sachdiskussion von Forschungsergebnissen. Zusätzlich können projektbezogene Arbeiten zu aktuellen wissenschaftlichen Diskussionen vorgesehen sein. Die dabei vertieften Inhalte können in einem Bachelorseminar die Grundlage für die Bachelor-Arbeit bilden.
- 4. Praktika und Projekte (P, Regelgruppengröße = 15): In einem Praktikum oder Projekt werden fachpraktische Themen angeboten, die in die spezifische Arbeitsweise der betreffenden Studienfächer einführen. Die den Themen zugrunde liegenden theoretischen Kenntnisse erwirbt man durch Vorlesungen und Literaturstudien. Ein weiteres Ziel der Praktika ist die Vermittlung computergestützter Methoden durch praktische Anwendung. In Projekten werden in der Regel fachübergreifende Themen behandelt. Die Bearbeitung eines Themas bietet den Studierenden die Gelegenheit, in Gruppen unter Anleitung themenspezifische Aufgabenstellungen von der Konzeption bis hin zur praktischen Realisierung zu lösen. Man lernt hier einerseits die

Zusammenhänge zwischen Theorie und Praxis durch eigene selbstständige Arbeit kennen, andererseits wird die Gruppenarbeit in Projekten gefördert. Die Teilnahme an Praktika oder Projekten kann vom Nachweis über die erfolgreiche Teilnahme an zugehörigen Vorlesungen und Übungen abhängig gemacht werden.

§ 6 Aufbau und Inhalt des Bachelor-Studiengangs

- (1) Das Studium des Bachelor-Studiengangs Bioinformatik umfasst eine Gesamtleistung von 180 Credit Points (CP) nach dem European Credit Transfer System (ECTS). Pro Semester sind in der Regel 30 CP zu erwerben.
- (2) Das Lehrangebot und die Studienleistungen für das Bachelor-Studium sind in Modulelemente bzw. Module gefasst. Der Inhalt und die Frequenz jedes Moduls sind ausführlich im Modulhandbuch dargestellt. In der folgenden Aufstellung wird jedes Modulelement (Vorlesung, Übung, Seminar oder Proseminar, Praktikum und eventuelle Kombinationen davon) mit den entsprechenden Semesterwochenstunden (SWS) sowie dem Workload, dargestellt in CP, ausgewiesen. Zugleich wird unter Angabe des entsprechenden Modulelements festgehalten, welche Art der Prüfung durchgeführt wird. In Absatz 7 ist geregelt, in welchem Zyklus die Modulelemente angeboten werden. In der letzten Spalte "Mindest-Anforderung (CP) pro Kategorie" sind die Mindestanzahlen an Credit Points aufgeführt, die in dieser Modulkategorie in den Vertiefungen "CMB" und "Bl" erreicht werden müssen. In der ersten Kategorie kennzeichnet die Zahl in Klammern die Mindestanzahl an Credit Points, die aus Grundvorlesungen der Informatik stammen muss.

M-Kürzel	M-Titel	SWS	СР	Art der Prüfung	Mindest-Anford pro Kategorie	erung (CP)
					CMB	BI
"Vorlesunge (benotet)	n aus dem Bereich der m	athematische	n Grundla	agen"	51 (24)	33 (15)
M-B-1	Mathematik für Informatiker 1	V4 Ü2	9	К		
M-B-2	Mathematik für Informatiker 2	V4 Ü2	9	K		
M-B-3	Mathematik für Informatiker 3	V4 Ü2	9	К		
M-B-4	Analysis 1	V4 Ü2	9	K]	
M-B-5	Lineare Algebra 1	V4 Ü2	9	K]	
"Vorlesunge	n der angewandten Math	ematik" (beno	tet)			
A-B-1	Praktische Mathematik 1	V4 Ü2	9	K		
A-B-2	Statistik für Biologen	V1	1	K		
"Grundvorle:	sungen der Informatik" (b	enotet)				
I-B-1	Programmierung 1	V4 Ü2	9	K		
I-B-2	Programmierung 2	V4 Ü2	9	K		
I-B-3	Grundzüge der Theoretischen Informatik	V4 Ü2	9	K		
I-B-4	Grundzüge von Datenstrukturen und Algorithmen	V2 Ü2	6	K		
Grundvorles	ungen der Chemie und B		12	12		
C-B-1	Allgemeine Chemie	V5 (halbes Semester)	4	K		
C-B-2	Molekularbiologie	V2	3	K		
C-B-3	Organische Chemie und Biochemie	V6 (halbes Semester)	5	К		
C-B-4	Biochemie	V4	6	K		

Vorlesunge	en der Chemie und Biowiss	enschaften (benotet)		18	32
B-B-1	Biopharmazie und	V2 Ü1	5	K		•
	Drug Delivery					
B-B-2	Biophysik	V2	3	K		
B-B-3	Einführung in die Genetik	V4	6	К		
B-B-4	Physikalische Chemie	V2	3	K		
B-B-5	Medizinische Chemie	V2 Ü1	5	K		
	und Drug Design					
B-B-6	Molekulare Mikrobiologie	V2	3	K		
B-B-7	Einführung in die Biotechnologie	V2	3	K		
B-B-8	Einführung in die Zellbiologie	V3	5	K		
Veranstaltu	ingen zum Erwerb von Sch	ılüsselqualifik	ationen (unbenotet)	1	1
E-BM-1	Organisation wissenschaftlicher Forschung	V1	1	K		
E-BM-2	Projektmanagement	V1/Ü1	1	К		
E-BM-3	Patentrecht und	V1/Ü1	1	K		
•	Bioethik	• ., • .	•			
E-BM-4	Effizientes Lernen	V1	1	K		
Vorlesunge	en der Bioinformatik (benot	et)		1	27	24
BI-B-1	Ringvorlesung Einführung in die Bioinformatik	V2	3	Prot		
BI-B-2	Bioinformatik 1	V4 Ü2	9	K		
BI-B-3	Bioinformatik 2	V4 Ü2	9	K		
BI-B-4	Computational Chemistry	V2 Ü2	6	К		
BI-BM-1	Spezialvorlesung der Bioinformatik	V2 Ü1	5	K/M		
Praktikum (der Informatik (unbenotet)				9	9
I-P-1	Softwarepraktikum	V2 P4	9	Projekt		
Praktika de	r Biowissenschaften (unbe	notet)			6	6
B-P-1	Grundpraktikum Biowissenschaften (2 Wochen)	P3	6	Prot		
	der Bioinformatik (benotet)					9
BI-PB-1	Softwarewerkzeuge der Bioinformatik	V2 P2	9	K / Prot		
Prosemina	r (benotet)	1	1	1	5	5
BI-SB-1	Proseminar über	S2	5	V / Prot	-	-
	Themen der Bioinformatik					
Bachelor-S	eminar (benotet)	•	•		9	9
BI-BS-1	Bachelor-Seminar über Themen der Bioinformatik	S1 P2	9	V		
Die Gesam	tsumme der Mindestleistur	138	140			
	ssen benotet sein:	<u> </u>	<u> </u>		122	124

Unter Berücksichtigung der Bachelor-Arbeit (12 CP) bleiben damit 28 (BI) bzw. 30 (CMB) Credit Points, die beliebig aus Lehrveranstaltungen der zulässigen Kategorien, Betreuung der Übungsgruppe einer Vorlesung als Tutorin/Tutor (je 4 CP), aus Englisch-Sprachkursen (maximal 9 CP) und aus dem in Absatz 2 beschriebenen Industrie- und Auslandspraktikum (14 CP) kombiniert werden können.

In der Spalte "Art der Prüfung" bezeichnet K eine Abschlussklausur, M eine mündliche Prüfung, Prot ein Protokoll, V einen Vortrag.

- (2) Den Studierenden des Bachelor-Studiengangs wird empfohlen, ein mindestens 8-wöchiges Industriepraktikum (in einer Bioinformatik-, Biotech- oder einer Pharma-Firma) oder einen mindestens 8-wöchigen Forschungsaufenthalt an einer anderen Universität oder Forschungseinrichtung nach Möglichkeit im Ausland zu absolvieren.
- (3) Bezüglich der Freiheit, im Bachelor-Studiengang Module zu kombinieren gelten folgende Einschränkungen:

Bei den "Vorlesungen aus dem Bereich der mathematischen Grundlagen" sind nur die Kombinationen M-B-1 & M-B-2 oder M-B-4 & M-B-5 zulässig. Bei den "Grundvorlesungen der Chemie und Biowissenschaften" können entweder C-B-3 oder C-B-4 berücksichtigt werden.

- (4) Eine Prüfungsleistung ist entweder benotet oder unbenotet einzubringen. Die Teilung einer benoteten Prüfungsleistung in unbenotete und benotete Credit Points ist nicht möglich.
- (5) Für die Veranstaltungen in den Kategorien "Vorlesungen aus dem Bereich der mathematischen Grundlagen", "Grundvorlesungen der Informatik" sowie "Vorlesungen der Bioinformatik" wird einmalig eine nicht bestandene Prüfungsleistung, die beim erstmöglichen Prüfungstermin und vor Ablauf des Regelstudiensemesters abgelegt wird, als "Freiversuch" gewertet (vgl. § 17 Abs. 4 der Prüfungsordnung), falls die Prüfungsleistung unmittelbar, d.h. im gleichen Prüfungszeitraum (vgl. § 13 Abs. 4 der Prüfungsordnung) wiederholt wird. Das Regelstudiensemester für diese Veranstaltungen beträgt 6.
- (6) Eine bestandene Prüfungsleistung der in Absatz 5 erwähnten Veranstaltungen kann in der Regelstudienzeit einmalig zur Notenverbesserung im gleichen Prüfungszeitraum (vgl. § 13 Abs. 4 der Prüfungsordnung) wiederholt werden. Bestandene Prüfungsleistungen in anderen Veranstaltungen können einmalig zur Notenverbesserung im gleichen Prüfungszeitraum wiederholt werden, falls der Dozent zu Beginn der Veranstaltung die jeweilige Prüfungsleistung als verbesserbar ausweist. Dabei zählt das bessere Ergebnis. Ansonsten ist die Wiederholung einer bestandenen Prüfungsleistung nicht zulässig.
- (7) Jedes Modulelement wird mindestens einmal im Jahr angeboten, bis auf die "Veranstaltungen zum Erwerb von Schlüsselqualifikationen", die mindestens alle zwei Jahre angeboten werden.
- (8) Das Studienangebot in den verschiedenen Modulkategorien kann für ein oder mehrere Semester um zusätzliche Modulelemente erweitert werden, die vom Prüfungsausschuss zu genehmigen sind. Diese Veranstaltungen, ihr Gewicht in Credit Points und ihre Zugehörigkeit zu einer oder mehreren der vorgesehenen Modulkategorien werden jeweils vor Semesterbeginn bekannt gegeben.
- (9) Für Proseminare, Übungen und Praktika kann eine Anwesenheitspflicht bestehen, die der Dozent zu Beginn der Veranstaltung bekannt gibt.

§ 7 Bachelor-Arbeit und Bachelor-Seminar

(1) Durch die Anfertigung einer Bachelor-Arbeit soll der/die Studierende nachweisen, dass er/sie Aufgabenstellungen aus dem Bereich der Bioinformatik eigenständig bearbeiten kann. Die Bearbeitungszeit beträgt drei Monate. Der mit der Bachelor-Arbeit verbundene Aufwand wird mit 12 CP kreditiert.

- (2) Jeder Studierende muss vor der Anmeldung zur Bachelor-Arbeit erfolgreich ein Bachelor-Seminar mit direktem Bezug zum Thema der Bachelor-Arbeit abgeschlossen haben, in dem ein Vortrag über die geplante Themenstellung gehalten wird.
- (3) Die Bachelor-Arbeit muss spätestens ein Semester nach erfolgreicher Teilnahme am Bachelor-Seminar beim Prüfungssekretariat angemeldet werden. Die Anmeldung der Arbeit beinhaltet die Einreichung der Vortragsfolien des Bachelor-Seminars im Prüfungssekretariat. Nach Ablauf dieser Frist muss erneut ein Bachelor-Seminar erfolgreich absolviert werden.

§ 8 Aufbau und Inhalt des Master-Studiengangs

- (1) Das Studium des Master-Studiengangs Bioinformatik umfasst eine Gesamtleistung von 120 Credit Points (CP) nach dem European Credit Transfer System (ECTS). Pro Semester sind in der Regel 30 CP zu erwerben.
- (2) Die Modulelemente im Master-Studiengang werden in der Regel in englischer Sprache angeboten. Durch die Studiengangsverantwortlichen wird sichergestellt, dass in den einzelnen Kategorien ausreichend Veranstaltungen in englischer Sprache angeboten werden um die für den Abschluss des Masterstudiengangs in den einzelnen Kategorien erforderlichen Leistungen erwerben zu können.

Die folgende Aufstellung regelt die Anforderung für den Masterstudiengang Bioinformatik

M-Kürzel	M-Titel	SWS	СР	Art der Prüfung	Mindest-Anforderung (CP) pro Kategorie
"Stammyorle	ı esungen der Informatik" (benc	itet)		Traiding	18
I-M-1	Datenstrukturen und	V4 Ü2	9	K	
	Algorithmen				
I-M-2	Computergraphik	V4 Ü2	9	K	
I-M-3	Datenbanksysteme	V4 Ü2	9	K	
I-M-4	Information Retrieval	V4 Ü2	9	K	
I-M-5	Künstliche Intelligenz	V4 Ü2	9	K	
I-M-6	Optimierung	V4 Ü2	9	K	
I-M-7	Geometric Modelling	V4 Ü2	9	K	
I-M-8	Introduction to	V4 Ü2	9	K	
	Computational Logic				
I-M-9	Image Processing and Computer Vision	V4 Ü2	9	K	
I-M-10	Softwaretechnik	V4 Ü2	9	K	
I-M-11	Machine Learning	V4 Ü2	9	K	
"Fortgeschri	ittenen-Vorlesungen der Biowi	issenschaften" (benotet)		12
B-M-1	Molekulare Biotechnologie 2	V2	3	K	
B-M-2	Das menschliche Genom	V2	3	K	
B-M-3	Systems and Synthetic Biology	V2 Ü1 S1	6	K	
B-M-4	Bioreaktionstechnik	V2 Ü1 S1	6	K	
B-M-5	Spezialvorlesung der	V2 Ü1	5	K/M	
2 0	Biowissenschaft	120.		1 1 1 1 1 1 1	
"Fortgeschri	ittenen-Vorlesungen der Bioin	formatik" (benot	et)		19
BI-M-1	Bioinformatik 3	V4 Ü2	9	K	
BI-BM-1	Spezialvorlesung der Bioinformatik	V2 Ü1	5	K/M	
"Praktika de	er BioInformatik" (unbenotet)	•	1		5
BI-PM-1	Programmierkurs	P2	5	Prot / K	
Veranstaltur (unbenotet)	ngen zum Erwerb von Schlüss	selqualifikatione	i		0
E-BM-1	Organisation wissenschaftlicher	V1	1	K	
	Forschung				
E-BM-2	Projektmanagement	V1/Ü1	1	K	
E-BM-3	Patentrecht und Bioethik	V1/Ü1	1	K	
	ittenen-Praktika der Biowisser				0
B-PM-1	Fortgeschrittenpraktikum Biowissenschaften	P3	8	Prot	
"Seminar" (b			7		
BI-SM-1	Seminar über Themen der Bioinformatik (maximal zwei)	S2	7	V / Prot	
"Master-Ser	minar" (benotet)	•	•	•	12
BI-MS-1	Masterseminar über Themen der Bioinformatik	S1 P3	12	V	
Die Gesamt	summe der Pflichtleistungen b	beträgt			73
	sen benotet sein:				68

Unter Berücksichtigung der Master-Arbeit (30 CP) bleiben damit 17 Credit Points, die beliebig aus Lehrveranstaltungen der zulässigen Kategorien oder durch Betreuung von Übungsgruppen von Vorlesungen als Tutorin/Tutor (je 4 CP) erworben werden können. Die einzige Ausnahme hiervon ist die Bedingung, dass maximal zwei Seminare (S-M-1) in das Master-Zeugnis eingebracht werden können.

In der Spalte "Art der Prüfung" bezeichnet K eine Abschlussklausur, M eine mündliche Prüfung, Prot ein Protokoll, V einen Vortrag.

- (3) Eine Prüfungsleistung ist entweder benotet oder unbenotet einzubringen. Die Teilung einer benoteten Prüfungsleistung in unbenotete und benotete Credit Points ist nicht möglich.
- (4) Eine bestandene Prüfungsleistung in einer "Stammvorlesung für Informatik" kann in der Regelstudienzeit einmalig zur Notenverbesserung im gleichen Prüfungszeitraum (vgl. § 13 Abs. 4 der Prüfungsordnung) wiederholt werden. Bestandene Prüfungsleistungen in anderen Veranstaltungen können einmalig zur Notenverbesserung im gleichen Prüfungszeitraum wiederholt werden, falls der Dozent zu Beginn der Veranstaltung die jeweilige Prüfungsleistung als verbesserbar ausweist. Dabei zählt das bessere Ergebnis. Ansonsten ist die Wiederholung einer bestandenen Prüfungsleistung nicht zulässig.
- (5) Jede der Vorlesungen, Praktika, und Proseminare wird mindestens einmal im Jahr angeboten, bis auf die "Stammvorlesungen der Informatik" und die "Veranstaltungen zum Erwerb von Schlüsselqualifikationen", von denen jede mindestens einmal alle zwei Jahre angeboten wird. Jedes Semester werden mindestens zwei "Spezialvorlesungen der Bioinformatik" angeboten.
- (6) Das Studienangebot in den verschiedenen Modulkategorien kann für ein oder mehrere Semester um zusätzliche Modulelemente erweitert werden, die vom Prüfungsausschuss zu genehmigen sind. Diese Veranstaltungen, ihr Gewicht in Credit Points und ihre Zugehörigkeit zu einer oder mehreren der vorgesehenen Modulkategorien werden jeweils vor Semesterbeginn bekannt gegeben.
- (7) Für Seminare, Übungen und Praktika kann eine Anwesenheitspflicht bestehen, die der Dozent zu Beginn der Veranstaltung bekannt gibt.

§ 9 Master-Arbeit und Master-Seminar

- (1) Durch die Anfertigung einer Master-Arbeit soll der/die Studierende nachweisen, dass er/sie Aufgabenstellungen aus dem Bereich der Bioinformatik eigenständig bearbeiten kann. Die Bearbeitungszeit beträgt sechs Monate. Der mit der Master-Arbeit verbundene Aufwand wird mit 30 CP kreditiert.
- (2) Jeder Studierende muss vor der Anmeldung zur Master-Arbeit erfolgreich ein Master-Seminar mit direktem Bezug zum Thema der Master-Arbeit abgeschlossen haben, in dem ein Vortrag über die geplante Themenstellung gehalten wird.
- (3) Die Master-Arbeit muss spätestens ein Semester nach erfolgreicher Teilnahme am Master-Seminar beim Prüfungssekretariat angemeldet werden. Die Anmeldung der Arbeit beinhaltet die Einreichung der Vortragsfolien des Master-Seminars im Prüfungssekretariat. Nach Ablauf dieser Frist muss erneut ein Master-Seminar erfolgreich absolviert werden.

§ 10 Studienplan, Modulhandbuch

Das Zentrum für Bioinformatik erstellt auf der Grundlage dieser Studienordnung ein Modulhandbuch, das nähere Angaben über Art und Umfang, Inhalt, Qualifikationsziele und Lehrformen der Modulelemente enthält, sowie einen Studienplan, der Empfehlungen für einen zweckmäßigen Aufbau des Studiums gibt. Die aktuelle Version des Studienplans wird jeweils zu Semesterbeginn in geeigneter Form bekannt gegeben. Das jeweils aktuelle Lehrveranstaltungsangebot in den verschiedenen Modulkategorien wird ebenfalls im Vorlesungsverzeichnis des jeweiligen Semesters bekannt gegeben.

§ 11 Studienberatung

- (1) Für die studienbegleitende Fachberatung stehen die Lehrenden der am Studiengang beteiligten Fakultäten zur Verfügung. Bei Fragen zu den Bioinformatik-Studiengängen stehen insbesondere die Professorinnen/Professoren für Bioinformatik am Zentrum für Bioinformatik zur Verfügung. Zusätzlich werden die Studierenden auf die Studienberatung der Fachschaft hingewiesen.
- (2) Zu Beginn der Vorlesungszeit wird eine Orientierungsveranstaltung für die Studierenden des ersten Semesters angeboten. Sie informiert über Studienbedingungen, die Struktur des Studiengangs und die Prüfungsordnung.

§ 12 Auslandsaufenthalt

Es besteht die Möglichkeit, ein Auslandsstudium zu absolvieren. Die Studierenden sollten an einer Beratung zur Durchführung des Auslandsstudiums teilnehmen, ggf. vorbereitende Sprachkurse belegen und im Vorfeld über ein Learning Agreement die Anerkennung von Studienleistungen gemäß einschlägigen Prüfungsordnung klären. der Studienmöglichkeiten, Austauschprogramme, Stipendien und Formalitäten informieren sowohl das International Office als auch die Fachvertreter des entsprechenden Schwerpunktfachs. Aufgrund langer Antragsfristen und Bearbeitungszeiten ausländischen Universitäten wie Stipendiengebern sollte die Anmeldung für Auslandsstudium in der Regel ein Jahr vor Antritt des Auslandaufenthalts im Prüfungssekretariat erfolgen.

§ 13 In-Kraft-Treten, Übergangsregelung

- (1) Diese Ordnung tritt am Tage nach ihrer Bekanntmachung im Dienstblatt der Hochschulen des Saarlandes in Kraft.
- (2) Studierende, die ihr Bioinformatik-Studium in Saarbrücken vor In-Kraft-Treten dieser Ordnung begonnen haben, können ihr Studium für eine in § 38 Abs. 2 der Fachspezifischen Bestimmungen der Prüfungsordnung für den Bachelor- und Master-Studiengang Bioinformatik der Universität des Saarlandes vom 21. Januar 2015 (Dienstbl. Nr. 22, S. 180) detaillierte Übergangszeit nach der früheren Studienordnung vom 8. Juni 2006 abschließen.

Saarbrücken, 19. April 2016

Der Universitätspräsident

(Univ.-Prof. Dr. Volker Linneweber)

Anlage 1: Beispielstundenpläne

Beispielstundenplan für den Bachelor (BI)

Sem	Informatik	Mathematik	Bioinformatik	Grundvorlesungen der Chemie und Biowissenschaften	Vorlesungen der Biowissenschaften	Seminare	Praktika	Schlüssel- qualifika- tionen	ECTS
1	Programmierung I (9 CPs)	Mathematik für Informatiker I (9 CPs)	Ringvorlesung: Einführung in die Bioinformatik (3 CPs)	Allgemeine Chemie (4 CPs) Organische Chemie und Biochemie (5 CPs)				Effizientes Lernen (1 CP)	31 CPs
2	Programmierung II (9 CPs)	Mathematik für Informatiker II (9 CPs)		Molekularbiologie (3 CPs)			Software- Praktikum (9 CPs)		30 CPs
3	Grundzüge von Datenstrukturen und Algorithmen (6 CPs)		Bioinformatik I (9 CPs)		Einführung in die Biotechnologie (3 CPs) Biophysik (3 CPs)		Softwarewerk- zeuge (9 CPs)		30 CPs
4			Bioinformatik II (9 CPs)	Physikalische Chemie (3 CPs)	Molekulare Mikrobiologie (3 CPs)	Proseminar (5 CPs)	Tutortätigkeit (4 CPs)	Projekt- Management (1 CP)	25 CPs
5			Spezial-Vorlesung Bioinformatik (5 CPs)		Einführung in die Zellbiologie (5 CPs) Grundlagen der Genetik (6 CPs) Medizinische Chemie und Drug Design (5 CPs) Biopharmazie und Drug Delivery (6 CPs)		Grundpraktikum Biowissenschaften (6 CPs)		32 CPs
6			Spezial-Vorlesung Bioinformatik (5 CPs) Computational Chemistry (6 CPs) Bachelorarbeit (12 CPs)			Bachelor- Seminar (9 CPs)			32 CPs

Beispielstundenplan für den Bachelor (CMB)

Sem	Informatik	Mathematik	Bioinformatik	Grundvorlesungen der Chemie und Biowissenschaften	Vorlesungen der Biowissenschaften	Seminare	Praktika	Schlüssel- qualifika- tionen	ECTS
1	Programmierung I (9 CPs)	Mathematik für Informatiker I (9 CPs)	Ringvorlesung: Einführung in die Bioinformatik (3 CPs)	Allgemeine Chemie (4 CPs) Organische Chemie und Biochemie (5 CPs)				Effizientes Lernen (1 CP)	31 CPs
2	Programmierung II (9 CPs)	Mathematik für Informatiker II (9 CPs)		Molekularbiologie (3 CPs)			Software- Praktikum (9 CPs)		30 CPs
3	Grundzüge von Datenstrukturen und Algorithmen (6 CPs)	Mathematik für Informatiker III (9 CPs)	Bioinformatik I (9 CPs)		Einführung in die Biotechnologie (3 CPs) Biophysik (3 CPs)				30 CPs
4			Bioinformatik II (9 CPs) Spezial-Vorlesung Bioinformatik (5 CPs)	Physikalische Chemie (3 CPs)	Molekulare Mikrobiologie (3 CPs)	Proseminar (5 CPs)	Tutortätigkeit (4 CPs)		29 CPs
5			Spezial-Vorlesung Bioinformatik (5 CPs)		Einführung in die Zellbiologie (S CPs) Grundlagen der Genetik (6 CPs) Medizinische Chemie und Drug Design (5 CPs) Biopharmazie und Drug Delivery (5 CPs)		Grundpraktikum Biowissenschaf- ten (6 CPs)		32 CPs
6			Computational Chemistry (6 CPs) Bachelorarbeit (12 CPs)			Bachelor- Seminar (9 CPs)		Organisa- tion wiss. Forschung (1 CP)	28 CPs

Beispielstundenplan für den Master

Sem.	Stammvorlesungen Informatik	Bioinformatik	Fortgeschrittenen- Vorlesungen Biowissenschaften	Seminare	Praktika	Schlüsselquali- fikationen	ECTS
1	Data Structures and Algorithms (9 CPs)	Bioinformatik III (9 CPs)	Spezial-Vorlesung Biowissenschaften (5 CPs)	Seminar (Bioinformatik) (7 CPs)		Wiss. Publizieren (1 CP)	31 CPs
2	Artificial Intelligence (9 CPs)	Spezial-Vorlesung Bioinformatik (5 CPs)	Molekulare Biotechnologie II (3 CPs) Das menschliche Genom (3 CPs) Systems Toxicology (3 CPs)		Programmierkurs (5 CPs)	Organisation wiss. Forschung (1 CP)	29 CPs
3		Spezial-Vorlesung Bioinformatik (5 CPs) Spezial-Vorlesung Bioinformatik (5 CPs)		Masterseminar (12 CPs)	Fortgeschrittenen- Praktikum Biowissenschaften (8 CPs)		30 CPs
4		•	Masterarbeit (30 CPs)		•		30 CPs