
Program of Studies:

Master Program Bioinformatics

Name of the module:

Software Engineering

Abbreviation:

I-M-10

Subtitle:

Core Lecture

Modules: Lecture: 4 h (weekly)
Tutorial: 2 h (weekly)

Semester:

1st -3rd semester/at least every two years

Responsible lecturer:

Prof. Dr. Sven Apel

Lecturer:

Prof. Dr. Sven Apel

Language:

English

Level of the unit/
Mandatory or not:

Graduate course / mandatory elective

Total workload:

270 h = 90 h of classes and 180 h private study;

Credits:

9

Entrance requirements:

- Knowledge of programming concepts (as taught in the
lectures Programmierung 1 and Programmierung 2)

- Basic knowledge of software processes, design, and
testing (as taught and applied in the lecture
Softwarepraktikum)

Aims/Competences to be
developed:

- The students know and apply modern software development
techniques.

- They are aware of key factors contributing to the complexity
of real-world software systems, in particular, software
variability, configurability, feature interaction, crosscutting
concerns, and how to address them.

- They know how to apply established design and
implementation techniques to master software complexity.

- They are aware of advanced design and implementation
techniques, including collaboration-based design,
mixins/traits, aspects, pointcuts, advice.

- They are aware of advanced quality assurance techniques
that take the complexity of real-world software systems into
account: variability-aware analysis, sampling, feature-
interaction detection, predictive performance modeling, etc.

- They appreciate the role of non-functional properties and
know how to predict and optimize software systems
regarding these properties.

- They are able to use formal methods to reason about key
techniques and properties covered in the lecture.

Content:

- Domain analysis, feature modeling
- Automated reasoning about software configuration using

SAT solvers 36
- Runtime parameters, design patterns, frameworks
- Version control, build systems, preprocessors
- Collaboration-based design
- Aspects, pointcuts, advice
- Expression problem, preplanning problem, code scattering

& tangling, tyranny of the dominant decomposition,
inheritance vs. delegation vs. mixin composition

- Feature interaction problem (structural, control- & data-flow,
behavioral, non-functional feature interactions)

- Variability-aware analysis and variational program
representation (with applications to type checking and static
program analysis)

- Sampling (random, coverage)
- Machine learning for software performance prediction and

optimization

Assessment/Exams: Beside the lecture and weekly practical exercises, there will be
a number of assignments in the form of mini-projects for each
student to work on (every two to three weeks). The assignments
will be assessed based on the principles covered in the lecture.
Passing all assignments is a prerequisite for taking the final
written exam. The final grade is determined only by the written
exam. Further examination details will be announced by the
lecturer at the beginning of the course. In short:
- Passing all assignments (prerequisite for the written exam)
- Passing the written exam

Grade:

The grade is determined by the written exam. Passing all
assignments is a prerequisite for taking the written exam. The
assignments do not contribute to the final grade. Further
examination details will be announced by the lecturer at the
beginning of the course.

Literature:

- Feature-Oriented Software Product Lines: Concepts and
Implementation. S. Apel, et al., Springer, 2013.

- Generative Programming: Methods, Tools, and
Applications: Methods, Techniques and Applications. K.
Czarnecki, et al., Addison-Wesley, 2000.

- Mastering Software Variability with FeatureIDE. J. Meinicke,
et al., Springer, 2017.

