

Studiengang: Bachelor Bioinformatik

Modulbezeichnung: Software Engineering Lab

ggf. Kürzel: PI-B-1

ggf. Untertitel:

ggf. Lehrveranstaltungen: Daily exercises and lectures (first few weeks)
Daily project work with tutoring

Semester: 2. Semester

Angebotsturnus: Lecture free time after ss

Modulverantwortliche(r): Prof. Dr. Sven Apel

Dozent(in): Prof. Dr. Sven Apel

Sprache: Englisch

Zuordnung zum
Curriculum:

Pflichtmodulelement der Kategorie „Praktikum der
Informatik“

Lehrform / SWS:

Block (7 weeks)

Arbeitsaufwand:

270 h = 35 h of lectures and exercises + 235 h project work

Kreditpunkte: 9

Voraussetzungen: The completed programming 2 course is an admission
requirement for the Software Engineering lab

Lernziele / Kompetenzen:

Participants acquire the ability to solve complex software
development problems individually and in teams.
Participants are aware of common problems and pitfalls of
software development and know how to address them.
Participants are able to accomplish and coordinate software
development tasks based on a set of given requirements.
For this purpose, they are able to select proper methods and
techniques to minimize risks and maximize software quality.
Participants know about foundations and principles of software
design, including cohesion, coupling, modularity,
encapsulation, abstraction, and information hiding.
They are acquainted with a whole array of design patterns,
knowing their aim and individual strengths and weaknesses.
They are able to apply design patterns beneficially and to judge
and improve the quality of software designs.
Participants master fundamental techniques and tools for
software testing, debugging, and version control.

Inhalt: • Software design
• Software testing

• Team work
• Debugging

Studien-
Prüfungsleistungen:

The goal of the Software Engineering Lab is to develop a
non-trivial software system, partly in team effort and partly in
individual effort.
 In this course, a number of documents (design models,
documentation, etc.) and artifacts (source code,
tests, etc.) need to be developed and submitted.
Correctness, quality, and timely submission of all documents
and artifacts are major grading criteria.
The Software Engineering Lab consists of three phases:
exercise, group, and individual phase. In the exercise
phase, participants will complete an entry exam
(mini-tests), covering current topics from the lecture.
In the group phase, participants will design, implement, and
test a substantial software system in a team effort. Only
participants that have passed the exercise phase will be
admitted to the group phase.
In the individual phase, participants will design, develop, and
test a smaller system (or extension to a larger system) in an
individual effort. Only participants that have passed the
group phase will be admitted to the individual phase.
All documents (design models, documentation, etc.) and
artifacts (source code, tests, etc.) of the three phases will be
evaluated based on the principles and quality standard
conveyed in the lectures.
 More details on the exams will be announced at the
beginning of the course.

Literatur:

• Software Engineering. I. Sommerville, Addison-Wesley,
2004.
• Software Engineering: A Practioner’s Approach. R.
Pressman, McGraw Hill Text, 2001.
• Using UML: Software Engineering with Objects and
Components. P. Stevens, et al., Addison-Wesley, 1999.
• UML Distilled. M. Fowler, et al., Addison-Wesley, 2000.
• Objects, Components and Frameworks with UML, D.
D’Souza, et al., Addison-Wesley, 1999.
• Designing Object-Oriented Software. R. Wirfs-Brock, et al.,
Prentice Hall, 1990.
• Design Patterns. Elements of Reusable Object-Oriented
Software. E. Gamma, et al., Addison-Wesley, 1995.
• Head First Design Patterns. E. Freeman, et al. O’Reilly,
2004.
• Software Architecture: Perspectives on an Emerging
Discipline. M. Shaw, et al., Prentice-Hall, 1996.
• Refactoring: Improving the Design of Existing Code. M.
Fowler, et al., Addison-Wesley, 1999.
• Software Testing and Analysis: Process, Principles and
Techniques. M. Pezze, Wiley. 2007.

