Program of Studies:	Master Program Bioinformatics
Name of the module:	Special Lecture Bioinformatics: Algorithms for Sequence Analysis
Abbreviation:	BI-BM-1
Subtitle:	-
Modules:	Lecture and tutorial
Semester:	2nd semester master / every summer semester
Responsible lecturer:	Prof. Dr. Sven Rahmann
Lecturer:	Prof. Dr. Sven Rahmann
Language:	English
Level of the unit/ Mandatory or not:	Graduate course / mandatory elective
Course type/weekly hours:	Lecture: 4 h (2 x 2h weekly) Tutorial: 2 h (weekly)
Total workload:	300 h = 96 h of classes and 204 h of assignments and private study, including exam preparations
Credits:	9
Entrance requirements:	- Basic knowledge of sequence analysis, as taught in the Bachelor's courses (e.g., basic dynamic programming algorithms for pairwise alignment)
	- Basic probability theory and distributions (Binomial, Poisson, Geometric, Exponential, Normal, etc.)
	- Solid programming skills (ideally Python, but any language will do; there will be several programming exercises during the course).
Aims/Competences to be developed:	This course covers a subject that is relevant for computer scientists in general as well as in computational biology and bioinformatics: the analysis of (biological) sequences (or of bit sequences, strings,). Because every information stored in computers is eventually serialized as a bit sequence, the methods taught in this course are quite universal, even though emphasis is placed on biological applications.
	The course will convey the ability, given a sequence or set of sequences, to choose an appropriate framework and a concrete algorithm and its parameters to analyze the sequence(s) and answer questions about it.
	The students learn how to transfer algorithmic principles to concrete practical problems (transfer competence). The course also practices communication competence during the presentation of solutions of exercises.

Content:	- exact pattern matching algorithms (simple patterns, no index) and their analysis, including algorithms based on automata and bit-parallel algorithms,
	- full-text index data structures (suffix tree, suffix arrays) and applications to bioinformatics, e.g. repeat discovery; succinct index data structures (FM index) and algorithms (backward search),
	- approximate pattern matching (simple patterns, with and without index) and read mapping as an application,
	 pairwise sequence alignment: algorithms, variations, speed- ups; derivation of score matrices from Markov processes; statistical evaluation of alignments,
	- multiple sequence alignment: models, hardness, heuristics,
	- alignment-free methods, k-mers, hashing; locality sensitive hashing; min hashing; analysis; applications,
	- genome assembly and related problems,
	- motif search and discovery; statistical evaluation of motifs.
Assessment/Exams:	You need a cumulative 50% of the points in the problem sets (in both theoretical and programming exercises) to be admitted to the oral exam. Dates for oral exams will be set by individual appointment, usually shortly after the end of the semester, or close to the beginning of the pext semester (re-examination)
Literature:	Lecture slides and problem sheets are available on the website. Lecture recordings are available in the password protected area for registered students (CMS). In addition, the following books are recommended:
	Gonzalo Navarro, Mathieu Raffinot: <i>Flexible Pattern Matching in Strings</i> . Cambridge University Press.
	Enno Ohlebusch: <i>Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements, and Phylogenetic Reconstruction</i> . Oldenbusch Verlag, 2013.
	Dan Gusfield: <i>Algorithms on Strings, Trees and Sequences.</i> Cambridge University Press.