

Studiengang: Bachelor Bioinformatik

Modulbezeichnung: Software Engineering Lab

ggf. Kürzel: PI-B-1

ggf. Lehrveranstaltungen: Daily exercises and lectures (first few weeks)
Daily project work with tutoring

Semester: 2. Semester

Angebotsturnus: Lecture free time after ss

Modulverantwortliche(r): Prof. Dr. Sven Apel

Dozent(in): Prof. Dr. Sven Apel
Dr. Norman Peitek

Sprache: Englisch

Zuordnung zum
Curriculum:

Pflichtmodulelement der Kategorie „Praktikum der
Informatik“

Lehrform / SWS:

Block (7 weeks)

Arbeitsaufwand:

270 h = 35 h of lectures and exercises + 235 h project work

Kreditpunkte: 9

Voraussetzungen: Participation in the Software Engineering lab requires
extensive programming skills as taught in the courses
Programming 1 and Programming 2.
A passing grade in Programming 2 is required to enroll in
this course.
Students are required to bring their own laptops

Lernziele / Kompetenzen:

Participants acquire the ability to solve complex software
development problems individually and in teams.
Participants are aware of common problems and pitfalls of
software development and know how to address them.
Participants are able to accomplish and coordinate software
development tasks based on a set of given requirements.
For this purpose, they are able to select proper methods and
techniques to minimize risks and maximize software quality.
Participants know about foundations and principles of software
design, including cohesion, coupling, modularity,
encapsulation, abstraction, and information hiding.
They are acquainted with a whole array of design patterns,
knowing their aim and individual strengths and weaknesses.
They are able to apply design patterns beneficially and to judge
and improve the quality of software designs.
Participants master fundamental techniques and tools for
software testing, debugging, and version control.

Inhalt: • Software design
• Software testing
• Team work
• Debugging

Studien-
Prüfungsleistungen:

The goal of the Software Engineering Lab is to develop a
non-trivial software system in a team effort.
 In this course, a number of documents (design models,
documentation, implementation plan etc.) and artifacts
(source code, tests, etc.) need to be developed and
submitted. Correctness, completeness, quality, and timely
submission of all documents and artifacts are major grading
criteria.
The Software Engineering Lab consists of two phases:
exercise phase and group phase.
 In the exercise phase, participants will complete an entry
exam, covering current topics from the lecture. Only
participants that have passed the exercise phase will be
admitted tot he group phase.
In the group phase, participants will first design and then
implement, and test a substantial software system in a team
effort, an dsubmit both their design and their implementation
(including tests) for evaluation.
All documents (design models, documentation,
implementation plan etc.) and artifacts (source code, tests,
etc.) of the group phase will be evaluated based on the
principles and quality criteria conveyed in the lectures. To
pass the group phase, students must pass both the design
submission and the implementation submission, and prove
individually their substantial contribution to the group project.
 More details on the exams will be announced at the
beginning of the course.

Literatur:

• Software Engineering. I. Sommerville, Addison-Wesley,
2004.
• Software Engineering: A Practioner’s Approach. R.
Pressman, McGraw Hill Text, 2001.
• Using UML: Software Engineering with Objects and
Components. P. Stevens, et al., Addison-Wesley, 1999.
• UML Distilled. M. Fowler, et al., Addison-Wesley, 2000.
• Objects, Components and Frameworks with UML, D.
D’Souza, et al., Addison-Wesley, 1999.
• Designing Object-Oriented Software. R. Wirfs-Brock, et al.,
Prentice Hall, 1990.
• Design Patterns. Elements of Reusable Object-Oriented
Software. E. Gamma, et al., Addison-Wesley, 1995.
• Head First Design Patterns. E. Freeman, et al. O’Reilly,
2004.
• Software Architecture: Perspectives on an Emerging
Discipline. M. Shaw, et al., Prentice-Hall, 1996.
• Refactoring: Improving the Design of Existing Code. M.
Fowler, et al., Addison-Wesley, 1999.
• Software Testing and Analysis: Process, Principles and
Techniques. M. Pezze, Wiley. 2007.

