Abstract
Smoking is the most important risk factor for both lung cancer (LC) and chronic obstructive pulmonary disease. The aim of this study was to investigate the role of myeloid cell nuclear factor-κB in the regulation of tumor cell growth signaling. We subjected mice lacking myeloid RelA/p65 (relaΔ−/−) to a metastatic LC model. Cigarette smoke (CS) exposure significantly increased the proliferation of Lewis lung carcinoma cell tumors in wild-type mice. In CS-exposed relaΔ−/− mice, the tumor growth was largely inhibited. Transcriptome and pathway analysis of cancer tissue revealed a fundamental impact of myeloid cells on various growth signaling pathways, including the Wnt/β-catenin pathway. In conclusion, myeloid RelA/p65 is necessary to link smoke-induced inflammation with LC growth and has a role in the activation of Wnt/β-catenin signaling in tumor cells.